Laplaceova transformacija

Laplasova transformacija (nazvana po Pjer-Simon Laplasu) je integralna transformacija, koja datu kauzalnu funkciju f(t) (original) preslikava iz vremenskog domena (t = vreme) u funkciju F(s) u kompleksnom spektralnom domenu. Laplasova transformacija, iako je dobila ime u njegovu čast, jer je ovu transformaciju koristio u svom radu o teoriji verovatnoće, transformaciju je zapravo otkrio Leonard Ojler, švajcarski matematičar iz osamnaestog veka.

Pojam originala

Funkcija t->f(t) naziva se originalom ako ispunjava sledeće uslove:

1. f je integrabilna na svakom konačnom intervalu t ose
2. za svako t<0, f(t)=0
3. postoje M i s0, tako da je | f ( t ) | M e s 0 t {\displaystyle |f(t)|\leq Me^{s_{0}t}}


Definicija Laplasove transformacije

F ( s ) = L { f ( t ) } = 0 e s t f ( t ) d t . ( s = σ + i ω ; σ > 0 ; t 0 ) {\displaystyle F(s)={\mathcal {L}}\left\{f(t)\right\}=\int _{0}^{\infty }e^{-st}f(t)\,dt.\qquad (s=\sigma +\mathrm {i} \omega ;\quad \sigma >0;\quad t\geq 0)}

Funkcija F(s) je »slika« ili laplasova transformacija »originala« f(t).

Za slučaj da je s = i ω {\displaystyle s=i\omega } dobija se jednostrana Furijeova transformacija:

F ( ω ) = F { f ( t ) } {\displaystyle F(\omega )={\mathcal {F}}\left\{f(t)\right\}}
= L { f ( t ) } | s = i ω = F ( s ) | s = i ω {\displaystyle ={\mathcal {L}}\left\{f(t)\right\}|_{s=i\omega }=F(s)|_{s=i\omega }}
= 0 e ı ω t f ( t ) d t . {\displaystyle =\int _{0}^{\infty }e^{-\imath \omega t}f(t)\,\mathrm {d} t.}

Osobine

Linearnost

L { k = 1 n α k f k ( t ) } = k = 1 n α k F k ( s ) {\displaystyle {\mathcal {L}}\{\sum _{k=1}^{n}\alpha _{k}f_{k}(t)\}=\sum _{k=1}^{n}\alpha _{k}F_{k}(s)}

Teorema sličnosti

Ako je a > 0 {\displaystyle a>0} , tada je L { f ( a t ) } = 1 a F ( s a ) {\displaystyle {\mathcal {L}}\{f(at)\}={1 \over a}F({s \over a})} , pri čemu je L { f ( t ) } = F ( s ) {\displaystyle {\mathcal {L}}\{f(t)\}=F(s)}

Diferenciranje originala

Ako je a > 0 {\displaystyle a>0} i L { f ( t ) } = F ( s ) {\displaystyle {\mathcal {L}}\{f(t)\}=F(s)} , tada je L { f ( t ) } = s F ( s ) f ( 0 ) {\displaystyle {\mathcal {L}}\{f^{\prime }(t)\}=sF(s)-f(0)}

Diferenciranje slike

Ako je L { f ( t ) } = F ( s ) {\displaystyle {\mathcal {L}}\{f(t)\}=F(s)} , tada je L { t f ( t ) } = F ( s ) {\displaystyle {\mathcal {L}}\{tf(t)\}=-F^{\prime }(s)} , odnosno indukcijom se potvrđuje da važi L { t n f ( t ) } = ( 1 ) n F ( n ) ( s ) {\displaystyle {\mathcal {L}}\{t^{n}f(t)\}=(-1)^{n}F^{(n)}(s)}

Integracija originala

Ako je a > 0 {\displaystyle a>0} i L { f ( t ) } = F ( s ) {\displaystyle {\mathcal {L}}\{f(t)\}=F(s)} , tada je L { 0 t t ( τ ) d τ } = 1 s F ( s ) {\displaystyle {\mathcal {L}}\{\int _{0}^{t}t(\tau )d\tau \}={1 \over s}F(s)}

Integracija slike

Ako postoji integral 0 F ( s ) d s {\displaystyle \int _{0}^{\infty }F(s)ds} , tada je L { f ( t ) t } = s F ( σ ) d σ {\displaystyle {\mathcal {L}}\{{f(t) \over t}\}=\int _{s}^{\infty }F(\sigma )d\sigma }

Teorema pomeranja

L { e s 0 t f ( t ) } = F ( s s 0 ) {\displaystyle {\mathcal {L}}\{{e^{s_{0}t}f(t)}\}=F(s-s_{0})}

Teorema kašnjenja

L { f ( t τ ) } = e s τ F ( s ) , τ 0 {\displaystyle {\mathcal {L}}\{{f(t-\tau )}\}=-e^{-s\tau }F(s),\tau \geq 0}

Laplasova transformacija konvolucije funkcija

L { f g } = L { f } L { g } {\displaystyle {\mathcal {L}}\{f*g\}={\mathcal {L}}\{f\}{\mathcal {L}}\{g\}}

Ova osobina je poznata kao Borelova teorema. Napomena: definicija konvolucije je: ( f g ) ( x ) = + f ( x t ) g ( t ) d t = + f ( t ) g ( x t ) d t {\displaystyle (f\ast g)(x)=\int _{-\infty }^{+\infty }f(x-t)\cdot g(t)\cdot dt=\int _{-\infty }^{+\infty }f(t)\cdot g(x-t)\cdot dt}

Laplasova transformacija periodičnih funkcija

Ako f ( t ) {\displaystyle f(t)} ima osobinu f ( t + T ) = f ( t ) {\displaystyle f(t+T)=f(t)} , tada važi L { f ( t ) } = 0 T e s u 1 e s T f ( u ) d u {\displaystyle {\mathcal {L}}\{f(t)\}=\int _{0}^{T}{e^{-su} \over {1-e^{-sT}}}f(u)du}

Dokaz

0 e s t f ( t ) d t = 0 T e s t f ( t ) d t t = u + T 2 T e s t f ( t ) d t t = u + T 2 T 3 T e s t f ( t ) d t t = u + 2 T + . . . {\displaystyle {\mathcal {\,}}\int _{0}^{\infty }e^{-st}f(t)dt=\int _{0}^{T}e^{-st}f(t)dt{\mid }_{t=u}+\int _{T}^{2T}e^{-st}f(t)dt{\mid }_{t=u+T}\int _{2T}^{3T}e^{-st}f(t)dt{\mid }_{t=u+2T}+...\,}
0 e s t f ( t ) d t = 0 T e s t f ( u ) d u + T 2 T e s ( u + T ) f ( u + T ) d u + 2 T 3 T e s ( u + 2 T ) f ( u + 2 T ) d u + . . . {\displaystyle {\mathcal {\,}}\int _{0}^{\infty }e^{-st}f(t)dt=\int _{0}^{T}e^{-st}f(u)du+\int _{T}^{2T}e^{-s(u+T)}f(u+T)du+\int _{2T}^{3T}e^{-s(u+2T)}f(u+2T)du+...\,}
0 e s t f ( t ) d t = 0 T e s u f ( u ) d u + e s T 0 T e s u f ( u ) d u + e 2 s T 0 T e s u f ( u ) d T + . . . {\displaystyle {\mathcal {\,}}\int _{0}^{\infty }e^{-st}f(t)dt=\int _{0}^{T}e^{-su}f(u)du+e^{-sT}\int _{0}^{T}e^{-su}f(u)du+e^{-2sT}\int _{0}^{T}e^{-su}f(u)dT+...\,}
0 e s t f ( t ) d t = ( 1 + e s T + e 2 s T + . . . ) 0 T e s T f ( T ) d u u = t {\displaystyle {\mathcal {\,}}\int _{0}^{\infty }e^{-st}f(t)dt=(1+e^{-sT}+e^{-2sT}+...)\int _{0}^{T}e^{-sT}f(T)du{\mid }_{u=t}\,}

Odakle sledi: v { f } = 1 1 e T s 0 T e s t f ( t ) d t {\displaystyle {\mathcal {v}}\{f\}={1 \over 1-e^{-Ts}}\int _{0}^{T}e^{-st}f(t)\,dt}

Tabela najčešće korišćenih Laplasovih transformacija

Jednostrana Laplasova transformacija ima smisla samo za ne-negativne vrednosti t, stoga su sve vremenske funkcije u tabeli pomožene sa Hevisajdovom funkcijom.

ID Funkcija Vremenski domen
x ( t ) = L 1 { X ( s ) } {\displaystyle x(t)={\mathcal {L}}^{-1}\left\{X(s)\right\}}
Laplasov s-domen
(frekventni domen)
X ( s ) = L { x ( t ) } {\displaystyle X(s)={\mathcal {L}}\left\{x(t)\right\}}
Oblast konvergencije
za kauzalne sisteme
1 idealno kašnjenje δ ( t τ )   {\displaystyle \delta (t-\tau )\ } e τ s   {\displaystyle e^{-\tau s}\ }
1a jedinični impuls δ ( t )   {\displaystyle \delta (t)\ } 1 {\displaystyle 1}   s {\displaystyle \mathrm {} \ s\,}
2 zakašnjeni n-ti stepen
sa frekvencijskim pomeranjem
( t τ ) n n ! e α ( t τ ) u ( t τ ) {\displaystyle {\frac {(t-\tau )^{n}}{n!}}e^{-\alpha (t-\tau )}\cdot u(t-\tau )} e τ s ( s + α ) n + 1 {\displaystyle {\frac {e^{-\tau s}}{(s+\alpha )^{n+1}}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2a n-ti stepen
(za ceo broj n)
t n n ! u ( t ) {\displaystyle {t^{n} \over n!}\cdot u(t)} 1 s n + 1 {\displaystyle {1 \over s^{n+1}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2a.1 q-ti stepen
(za realno q)
t q Γ ( q + 1 ) u ( t ) {\displaystyle {t^{q} \over \Gamma (q+1)}\cdot u(t)} 1 s q + 1 {\displaystyle {1 \over s^{q+1}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2a.2 Hevisajdova funkcija u ( t )   {\displaystyle u(t)\ } 1 s {\displaystyle {1 \over s}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2b zakašnjena Hevisajdova funkcija u ( t τ )   {\displaystyle u(t-\tau )\ } e τ s s {\displaystyle {e^{-\tau s} \over s}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2c rampa funkcija t u ( t )   {\displaystyle t\cdot u(t)\ } 1 s 2 {\displaystyle {\frac {1}{s^{2}}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
2d frekvencijsko pomeranje n-tog reda t n n ! e α t u ( t ) {\displaystyle {\frac {t^{n}}{n!}}e^{-\alpha t}\cdot u(t)} 1 ( s + α ) n + 1 {\displaystyle {\frac {1}{(s+\alpha )^{n+1}}}} Re { s } > α {\displaystyle {\textrm {Re}}\{s\}>-\alpha \,}
2d.1 eksponencijalno opadanje e α t u ( t )   {\displaystyle e^{-\alpha t}\cdot u(t)\ } 1 s + α {\displaystyle {1 \over s+\alpha }} Re { s } > α   {\displaystyle {\textrm {Re}}\{s\}>-\alpha \ }
3 eksponencijalno približavanje ( 1 e α t ) u ( t )   {\displaystyle (1-e^{-\alpha t})\cdot u(t)\ } α s ( s + α ) {\displaystyle {\frac {\alpha }{s(s+\alpha )}}} Re { s } > 0   {\displaystyle {\textrm {Re}}\{s\}>0\ }
4 sinus sin ( ω t ) u ( t )   {\displaystyle \sin(\omega t)\cdot u(t)\ } ω s 2 + ω 2 {\displaystyle {\omega \over s^{2}+\omega ^{2}}} Re { s } > 0   {\displaystyle {\textrm {Re}}\{s\}>0\ }
5 kosinus cos ( ω t ) u ( t )   {\displaystyle \cos(\omega t)\cdot u(t)\ } s s 2 + ω 2 {\displaystyle {s \over s^{2}+\omega ^{2}}} Re { s } > 0   {\displaystyle {\textrm {Re}}\{s\}>0\ }
6 sinus hiperbolikus sinh ( α t ) u ( t )   {\displaystyle \sinh(\alpha t)\cdot u(t)\ } α s 2 α 2 {\displaystyle {\alpha \over s^{2}-\alpha ^{2}}} Re { s } > | α |   {\displaystyle {\textrm {Re}}\{s\}>|\alpha |\ }
7 kosinus hiperbolikus cosh ( α t ) u ( t )   {\displaystyle \cosh(\alpha t)\cdot u(t)\ } s s 2 α 2 {\displaystyle {s \over s^{2}-\alpha ^{2}}} Re { s } > | α |   {\displaystyle {\textrm {Re}}\{s\}>|\alpha |\ }
8 eksponencijalno opadajući
sinus
e α t sin ( ω t ) u ( t )   {\displaystyle e^{\alpha t}\sin(\omega t)\cdot u(t)\ } ω ( s α ) 2 + ω 2 {\displaystyle {\omega \over (s-\alpha )^{2}+\omega ^{2}}} Re { s } > α   {\displaystyle {\textrm {Re}}\{s\}>\alpha \ }
9 eksponencijalno opadajući
kosinus
e α t cos ( ω t ) u ( t )   {\displaystyle e^{\alpha t}\cos(\omega t)\cdot u(t)\ } s α ( s α ) 2 + ω 2 {\displaystyle {s-\alpha \over (s-\alpha )^{2}+\omega ^{2}}} Re { s } > α   {\displaystyle {\textrm {Re}}\{s\}>\alpha \ }
10 n-ti koren t n u ( t ) {\displaystyle {\sqrt[{n}]{t}}\cdot u(t)} s ( n + 1 ) / n Γ ( 1 + 1 n ) {\displaystyle s^{-(n+1)/n}\cdot \Gamma \left(1+{\frac {1}{n}}\right)} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
11 prirodni logaritam ln ( t ) u ( t ) {\displaystyle \ln(t)\cdot u(t)} 1 s [ ln ( s ) + γ ] {\displaystyle -{1 \over s}\,\left[\ln(s)+\gamma \right]} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
12 Beselova funkcija
prve vrste,
reda n
J n ( ω t ) u ( t ) {\displaystyle J_{n}(\omega t)\cdot u(t)} ω n ( s + s 2 + ω 2 ) n s 2 + ω 2 {\displaystyle {\frac {\omega ^{n}\left(s+{\sqrt {s^{2}+\omega ^{2}}}\right)^{-n}}{\sqrt {s^{2}+\omega ^{2}}}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
( n > 1 ) {\displaystyle (n>-1)\,}
13 modifikovana Beselova funkcija
prve vrste,
reda n
I n ( ω t ) u ( t ) {\displaystyle I_{n}(\omega t)\cdot u(t)} ω n ( s + s 2 ω 2 ) n s 2 ω 2 {\displaystyle {\frac {\omega ^{n}\left(s+{\sqrt {s^{2}-\omega ^{2}}}\right)^{-n}}{\sqrt {s^{2}-\omega ^{2}}}}} Re { s } > | ω | {\displaystyle {\textrm {Re}}\{s\}>|\omega |\,}
14 Beselova funkcija
druge vrste,
nultog reda
Y 0 ( α t ) u ( t ) {\displaystyle Y_{0}(\alpha t)\cdot u(t)} 2 sinh 1 ( s / α ) π s 2 + α 2 {\displaystyle -{2\sinh ^{-1}(s/\alpha ) \over \pi {\sqrt {s^{2}+\alpha ^{2}}}}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
15 modifikovana Beselova funkcija
druge vrste,
nultog reda
K 0 ( α t ) u ( t ) {\displaystyle K_{0}(\alpha t)\cdot u(t)}    
16 funkcija greške e r f ( t ) u ( t ) {\displaystyle \mathrm {erf} (t)\cdot u(t)} e s 2 / 4 ( 1 erf ( s / 2 ) ) s {\displaystyle {e^{s^{2}/4}\left(1-\operatorname {erf} \left(s/2\right)\right) \over s}} Re { s } > 0 {\displaystyle {\textrm {Re}}\{s\}>0\,}
Objašnjenja:

  • u ( t ) {\displaystyle u(t)\,} predstavlja Hevisajdovu funkciju.
  • δ ( t ) {\displaystyle \delta (t)\,} predstavlja Dirakovu delta funkciju.
  • Γ ( z ) {\displaystyle \Gamma (z)\,} predstavlja Gama funkciju.
  • γ {\displaystyle \gamma \,} je Ojler-Maskeronijeva konstanta.

  • t {\displaystyle t\,} , je realan broj koji obično predstavlja vreme,
    iako može da se odnosi na bilo koju dimenziju.
  • s {\displaystyle s\,} je kompleksna ugaona frekvencija, a Re { s } {\displaystyle {\textrm {Re}}\{s\}} je njen realni deo.
  • α {\displaystyle \alpha \,} , β {\displaystyle \beta \,} , τ {\displaystyle \tau \,} , and ω {\displaystyle \omega \,} su realni brojevi.
  • n {\displaystyle n\,} , je ceo broj.

  • Kauzalni sistem je sistem u kome je impulsni odziv h(t) nula za svako vreme t<0. Vidi još: kauzalnost.

Inverzna Laplasova transformacija

U opšti slučaj, original f(t) date slike F(s) dobija se rešavanjem Bromvičovog integrala:

L 1 { F ( s ) } = 1 2 π ı γ ı γ + ı e s t F ( s ) d s γ > s 0 , {\displaystyle {\mathcal {L}}^{-1}\left\{F(s)\right\}={\frac {1}{2\pi \imath }}\int _{\gamma -\imath \infty }^{\gamma +\imath \infty }e^{st}F(s)\,ds\qquad \gamma >s_{0},}

gde je s 0 {\displaystyle s_{0}} realni deo bilo kog singulariteta funkcije F ( s ) {\displaystyle F(s)} .

S obzirom da se ovde integrali kompleksna promenljiva, potrebno je koristiti metode kompleksne matematičke analize. Mnogi primeri inverzne Laplasove transformacije navedeni su u tabeli iznad. U praksi, funkcije se transformišu u primere iz tablice, na primer razlaganjem na proste faktore.

Diskretna Laplasova transformacija

Za funkciju celobrojne promenljive f ( n ) {\displaystyle f(n)} njena diskretna Laplasova transformacija se definiše kao:

F ( s ) = n = 0 e s n f ( n ) {\displaystyle F^{\ast }(s)=\sum _{n=0}^{\infty }e^{-sn}f(n)}

Konvergencija ovog reda zavisi od s {\displaystyle s} .

Sve osobine i teoreme regularne Laplasove transformacije imaju svoje ekvivalente u diskretnoj Laplasovoj transformaciji.

Primena

U matematici Laplasova transformacija se koristi za analiziranje linearnih, vremenski nepromenljivih sistema, kao: električnih kola, harmonijskih oscilatora, optičkih uređaja i mehaničkih sistema. Ima primene u rešavanju diferencijalnih jednačina i teoriji verovatnoće.

Literatura

  • Arendt, Wolfgang; Batty, Charles J.K.; Hieber, Matthias; Neubrander, Frank (2002), Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser Basel, ISBN 3-7643-6549-8 .
  • Bracewell, Ronald N. (1978), The Fourier Transform and its Applications (2nd izd.), McGraw-Hill Kogakusha, ISBN 0-07-007013-X 
  • Bracewell, R. N. (2000), The Fourier Transform and Its Applications (3rd izd.), Boston: McGraw-Hill, ISBN 0-07-116043-4 .
  • Davies, Brian (2002), Integral transforms and their applications (Third izd.), New York: Springer, ISBN 0-387-95314-0 .
  • Feller, William (1971), An introduction to probability theory and its applications. Vol. II., Second edition, New York: John Wiley & Sons, MR 0270403 .
  • Korn, G. A.; Korn, T. M. (1967), Mathematical Handbook for Scientists and Engineers (2nd izd.), McGraw-Hill Companies, ISBN 0-07-035370-0 .
  • Polyanin, A. D.; Manzhirov, A. V. (1998), Handbook of Integral Equations, Boca Raton: CRC Press, ISBN 0-8493-2876-4 .
  • Schwartz, Laurent (1952), „Transformation de Laplace des distributions” (French), Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952: 196–206, MR 0052555 .
  • Siebert, William McC. (1986), Circuits, Signals, and Systems, Cambridge, Massachusetts: MIT Press, ISBN 0-262-19229-2 .
  • Widder, David Vernon (1941), The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, MR 0005923 .
  • Widder, David Vernon (1945), „What is the Laplace transform?”, American Mathematical Monthly (The American Mathematical Monthly) 52 (8): 419–425, DOI:10.2307/2305640, ISSN 0002-9890, JSTOR 2305640, MR 0013447 .
  • Williams, J. (1973), Laplace Transforms, Problem Solvers, George Allen & Unwin, ISBN 0-04-512021-8 
  • Takacs, J. (1953), „Fourier amplitudok meghatarozasa operatorszamitassal” (Hungarian), Magyar Hiradastechnika IV (7–8): 93–96 
  • Deakin, M. A. B. (1981), „The development of the Laplace transform”, Archive for the History of the Exact Sciences 25 (4): 343–390, DOI:10.1007/BF01395660 
  • Deakin, M. A. B. (1982), „The development of the Laplace transform”, Archive for the History of the Exact Sciences 26 (4): 351–381, DOI:10.1007/BF00418754 
  • Euler, L. (1744), „De constructione aequationum”, Opera omnia, 1st series 22: 150–161 .
  • Euler, L. (1753), „Methodus aequationes differentiales”, Opera omnia, 1st series 22: 181–213 .
  • Euler, L. (1769), „Institutiones calculi integralis, Volume 2”, Opera omnia, 1st series 12 , Chapters 3–5.
  • Grattan-Guinness, I (1997), „Laplace's integral solutions to partial differential equations”, Gillispie, C. C., Pierre Simon Laplace 1749–1827: A Life in Exact Science, Princeton: Princeton University Press, ISBN 0-691-01185-0 .
  • Lagrange, J. L. (1773), Mémoire sur l'utilité de la méthode, Œuvres de Lagrange, 2, pp. 171–234 .

Vanjske veze

  • http://mathworld.wolfram.com/LaplaceTransform.html
  • http://www.mathe.braunling.de/Laplace.htm Arhivirano 2006-07-21 na Wayback Machine-u
  • http://mo.mathematik.uni-stuttgart.de/aufgaben/L/laplace_transformation.html
  • http://www3.htl-hl.ac.at/homepage/bok/dt/mathe/mindex.html Arhivirano 2016-03-04 na Wayback Machine-u
  • http://www.seeit.de/xedu/formeln/Lars%20Weiser/laplace.pdf Arhivirano 2005-05-20 na Wayback Machine-u
  • http://www-hm.ma.tum.de/archiv/mw4/ss05/folien/Laplace.pdf Arhivirano 2016-03-06 na Wayback Machine-u
  • http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&Page=1020