Tavola degli integrali indefiniti di funzioni trigonometriche

Questa pagina contiene una tavola di integrali indefiniti di funzioni trigonometriche.

Per altri integrali vedi Integrale § Tavole di integrali.

In questa pagina si assume che c {\displaystyle c} sia una costante diversa da 0.

Integrali di funzioni trigonometriche contenenti solo il seno

Lo stesso argomento in dettaglio: Seno (trigonometria).
sin ( c x ) d x = cos ( c x ) c {\displaystyle \int \sin(cx)\;\mathrm {d} x=-{\frac {\cos(cx)}{c}}}
sin 2 x d x = 1 2 ( x sin x cos x ) + C {\displaystyle \int \sin ^{2}x\;\mathrm {d} x={\frac {1}{2}}(x-\sin x\cos x)+C}
sin n ( c x ) d x = sin n 1 ( c x ) cos ( c x ) n c + n 1 n sin n 2 ( c x ) d x ( per  n > 0 ) {\displaystyle \int \sin ^{n}(cx)\;\mathrm {d} x=-{\frac {\sin ^{n-1}(cx)\cos(cx)}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}(cx)\;\mathrm {d} x\qquad ({\text{per }}n>0)}
x sin ( c x ) d x = sin ( c x ) c 2 x cos ( c x ) c {\displaystyle \int x\sin(cx)\;\mathrm {d} x={\frac {\sin(cx)}{c^{2}}}-{\frac {x\cos(cx)}{c}}}
x n sin ( c x ) d x = x n c cos ( c x ) + n c x n 1 cos ( c x ) d x ( per  n > 0 ) {\displaystyle \int x^{n}\sin(cx)\;\mathrm {d} x=-{\frac {x^{n}}{c}}\cos(cx)+{\frac {n}{c}}\int x^{n-1}\cos(cx)\;\mathrm {d} x\qquad ({\text{per }}n>0)}
sin ( c x ) x d x = i = 0 ( 1 ) i ( c x ) 2 i + 1 ( 2 i + 1 ) ( 2 i + 1 ) ! {\displaystyle \int {\frac {\sin(cx)}{x}}\mathrm {d} x=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}}
sin ( c x ) x n d x = sin c x ( n 1 ) x n 1 + c n 1 cos ( c x ) x n 1 d x {\displaystyle \int {\frac {\sin(cx)}{x^{n}}}\mathrm {d} x=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos(cx)}{x^{n-1}}}\mathrm {d} x}
d x sin ( c x ) = 1 c ln | tan c x 2 | {\displaystyle \int {\frac {\mathrm {d} x}{\sin(cx)}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}
d x sin n ( c x ) = cos ( c x ) c ( 1 n ) sin n 1 ( c x ) + n 2 n 1 d x sin n 2 c x ( per  n > 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}(cx)}}={\frac {\cos(cx)}{c(1-n)\sin ^{n-1}(cx)}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx}}\qquad ({\text{per }}n>1)}
d x 1 ± sin ( c x ) = 1 c tan ( c x 2 π 4 ) {\displaystyle \int {\frac {\mathrm {d} x}{1\pm \sin(cx)}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}
x d x 1 + sin ( c x ) = x c tan ( c x 2 π 4 ) + 2 c 2 ln | cos ( c x 2 π 4 ) | {\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\sin(cx)}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}
x d x 1 sin c x = x c cot ( π 4 c x 2 ) + 2 c 2 ln | sin ( π 4 c x 2 ) | {\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}
sin c x d x 1 ± sin c x = ± x + 1 c tan ( π 4 c x 2 ) {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}
sin c 1 x sin c 2 x d x = sin ( c 1 c 2 ) x 2 ( c 1 c 2 ) sin ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) ( per  | c 1 | | c 2 | ) {\displaystyle \int \sin c_{1}x\sin c_{2}x\;\mathrm {d} x={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad ({\text{per }}|c_{1}|\neq |c_{2}|)}

Integrali di funzioni trigonometriche contenenti solo il coseno

Lo stesso argomento in dettaglio: Coseno.
cos ( c x ) d x = sin ( c x ) c {\displaystyle \int \cos(cx)\;\mathrm {d} x={\frac {\sin(cx)}{c}}}
cos n ( c x ) d x = cos n 1 ( c x ) sin ( c x ) n c + n 1 n cos n 2 ( c x ) d x ( per  n > 0 ) {\displaystyle \int \cos ^{n}(cx)\;\mathrm {d} x={\frac {\cos ^{n-1}(cx)\sin(cx)}{nc}}+{\frac {n-1}{n}}\int \cos ^{n-2}(cx)\;\mathrm {d} x\qquad ({\text{per }}n>0)}
x cos ( c x ) d x = cos ( c x ) c 2 + x sin ( c x ) c {\displaystyle \int x\cos(cx)\;\mathrm {d} x={\frac {\cos(cx)}{c^{2}}}+{\frac {x\sin(cx)}{c}}}
x n cos ( c x ) d x = x n sin ( c x ) c n c x n 1 sin ( c x ) d x {\displaystyle \int x^{n}\cos(cx)\;\mathrm {d} x={\frac {x^{n}\sin(cx)}{c}}-{\frac {n}{c}}\int x^{n-1}\sin(cx)\;\mathrm {d} x}
cos ( c x ) x d x = ln | c x | + i = 1 ( 1 ) i ( c x ) 2 i 2 i ( 2 i ) ! {\displaystyle \int {\frac {\cos(cx)}{x}}\mathrm {d} x=\ln |cx|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(cx)^{2i}}{2i\cdot (2i)!}}}
cos ( c x ) x n d x = cos ( c x ) ( n 1 ) x n 1 c n 1 sin ( c x ) x n 1 d x ( per  n 1 ) {\displaystyle \int {\frac {\cos(cx)}{x^{n}}}\mathrm {d} x=-{\frac {\cos(cx)}{(n-1)x^{n-1}}}-{\frac {c}{n-1}}\int {\frac {\sin(cx)}{x^{n-1}}}\mathrm {d} x\qquad ({\text{per }}n\neq 1)}
d x cos ( c x ) = 1 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\mathrm {d} x}{\cos(cx)}}={\frac {1}{c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
d x cos n ( c x ) = sin ( c x ) c ( n 1 ) cos n 1 ( c x ) + n 2 n 1 d x cos n 2 ( c x ) ( per  n > 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\cos ^{n}(cx)}}={\frac {\sin(cx)}{c(n-1)\cos ^{n-1}(cx)}}+{\frac {n-2}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}(cx)}}\qquad ({\text{per }}n>1)}
d x 1 + cos ( c x ) = 1 c tan c x 2 {\displaystyle \int {\frac {\mathrm {d} x}{1+\cos(cx)}}={\frac {1}{c}}\tan {\frac {cx}{2}}}
d x 1 cos ( c x ) = 1 c cot c x 2 {\displaystyle \int {\frac {\mathrm {d} x}{1-\cos(cx)}}=-{\frac {1}{c}}\cot {\frac {cx}{2}}}
x d x 1 + cos ( c x ) = x c tan ( c x / 2 ) + 2 c 2 ln | cos c x 2 | {\displaystyle \int {\frac {x\;\mathrm {d} x}{1+\cos(cx)}}={\frac {x}{c}}\tan({cx}/{2})+{\frac {2}{c^{2}}}\ln \left|\cos {\frac {cx}{2}}\right|}
x d x 1 cos ( c x ) = x x cot ( c x / 2 ) + 2 c 2 ln | sin c x 2 | {\displaystyle \int {\frac {x\;\mathrm {d} x}{1-\cos(cx)}}=-{\frac {x}{x}}\cot({cx}/{2})+{\frac {2}{c^{2}}}\ln \left|\sin {\frac {cx}{2}}\right|}
cos c x d x 1 + cos ( c x ) = x 1 c tan c x 2 {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{1+\cos(cx)}}=x-{\frac {1}{c}}\tan {\frac {cx}{2}}}
cos c x d x 1 cos ( c x ) = x 1 c cot c x 2 {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{1-\cos(cx)}}=-x-{\frac {1}{c}}\cot {\frac {cx}{2}}}
cos c 1 x cos c 2 x d x = sin ( c 1 c 2 ) x 2 ( c 1 c 2 ) + sin ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) ( per  | c 1 | | c 2 | ) {\displaystyle \int \cos c_{1}x\cos c_{2}x\;\mathrm {d} x={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}+{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad ({\text{per }}|c_{1}|\neq |c_{2}|)}

Integrali di funzioni trigonometriche contenenti solo tangente

Lo stesso argomento in dettaglio: Tangente (matematica).
tan c x d x = 1 c ln | cos c x | {\displaystyle \int \tan cx\;\mathrm {d} x=-{\frac {1}{c}}\ln |\cos cx|}
tan n c x d x = 1 c ( n 1 ) tan n 1 c x tan n 2 c x d x ( per  n 1 ) {\displaystyle \int \tan ^{n}cx\;\mathrm {d} x={\frac {1}{c(n-1)}}\tan ^{n-1}cx-\int \tan ^{n-2}cx\;\mathrm {d} x\qquad ({\text{per }}n\neq 1)}
d x tan c x + 1 = x 2 + 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {\mathrm {d} x}{\tan cx+1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
d x tan c x 1 = x 2 + 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {\mathrm {d} x}{\tan cx-1}}=-{\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}
tan c x d x tan c x + 1 = x 2 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {\tan cx\;\mathrm {d} x}{\tan cx+1}}={\frac {x}{2}}-{\frac {1}{2c}}\ln |\sin cx+\cos cx|}
tan c x d x tan c x 1 = x 2 + 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {\tan cx\;\mathrm {d} x}{\tan cx-1}}={\frac {x}{2}}+{\frac {1}{2c}}\ln |\sin cx-\cos cx|}

Integrali di funzioni trigonometriche contenenti solo secante

Lo stesso argomento in dettaglio: Secante (trigonometria).
sec c x d x = 1 c ln | sec c x + tan c x | {\displaystyle \int \sec {cx}\,\mathrm {d} x={\frac {1}{c}}\ln {\left|\sec {cx}+\tan {cx}\right|}}
sec n c x d x = sec n 1 c x sin c x c ( n 1 ) + n 2 n 1 sec n 2 c x d x per  n 1 , c 0 {\displaystyle \int \sec ^{n}{cx}\,\mathrm {d} x={\frac {\sec ^{n-1}{cx}\sin {cx}}{c(n-1)}}+{\frac {n-2}{n-1}}\int \sec ^{n-2}{cx}\,\mathrm {d} x\qquad {\text{per }}n\neq 1,c\neq 0}

Integrali di funzioni trigonometriche contenenti solo cosecante

Lo stesso argomento in dettaglio: Cosecante.
csc c x d x = 1 c ln | csc c x + cot c x | {\displaystyle \int \csc {cx}\,\mathrm {d} x=-{\frac {1}{c}}\ln {\left|\csc {cx}+\cot {cx}\right|}}
csc n c x d x = csc n 1 c x cos c x c ( n 1 ) + n 2 n 1 csc n 2 c x d x per  n 1 , c 0 {\displaystyle \int \csc ^{n}{cx}\,\mathrm {d} x=-{\frac {\csc ^{n-1}{cx}\cos {cx}}{c(n-1)}}+{\frac {n-2}{n-1}}\int \csc ^{n-2}{cx}\,\mathrm {d} x\qquad {\text{per }}n\neq 1,c\neq 0}

Integrali di funzioni trigonometriche contenenti solo cotangente

Lo stesso argomento in dettaglio: Cotangente.
cot c x d x = 1 c ln | sin c x | {\displaystyle \int \cot cx\;\mathrm {d} x={\frac {1}{c}}\ln |\sin cx|}
cot n c x d x = 1 c ( n 1 ) cot n 1 c x cot n 2 c x d x ( per  n 1 ) {\displaystyle \int \cot ^{n}cx\;\mathrm {d} x=-{\frac {1}{c(n-1)}}\cot ^{n-1}cx-\int \cot ^{n-2}cx\;\mathrm {d} x\qquad ({\text{per }}n\neq 1)}
d x 1 + cot c x = tan c x d x tan c x + 1 {\displaystyle \int {\frac {\mathrm {d} x}{1+\cot cx}}=\int {\frac {\tan cx\;\mathrm {d} x}{\tan cx+1}}}
d x 1 cot c x = tan c x d x tan c x 1 {\displaystyle \int {\frac {\mathrm {d} x}{1-\cot cx}}=\int {\frac {\tan cx\;\mathrm {d} x}{\tan cx-1}}}

Integrali di funzioni trigonometriche contenenti seno e coseno

d x cos c x ± sin c x = 1 c 2 ln | tan ( c x 2 ± π 8 ) | {\displaystyle \int {\frac {\mathrm {d} x}{\cos cx\pm \sin cx}}={\frac {1}{c{\sqrt {2}}}}\ln \left|\tan \left({\frac {cx}{2}}\pm {\frac {\pi }{8}}\right)\right|}
d x ( cos c x ± sin c x ) 2 = 1 2 c tan ( c x π 4 ) {\displaystyle \int {\frac {\mathrm {d} x}{(\cos cx\pm \sin cx)^{2}}}={\frac {1}{2c}}\tan \left(cx\mp {\frac {\pi }{4}}\right)}
cos c x d x cos c x + sin c x = x 2 + 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\cos cx+\sin cx}}={\frac {x}{2}}+{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
cos c x d x cos c x sin c x = x 2 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\cos cx-\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
sin c x d x cos c x + sin c x = x 2 1 2 c ln | sin c x + cos c x | {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx+\sin cx}}={\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx+\cos cx\right|}
sin c x d x cos c x sin c x = x 2 1 2 c ln | sin c x cos c x | {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx-\sin cx}}=-{\frac {x}{2}}-{\frac {1}{2c}}\ln \left|\sin cx-\cos cx\right|}
cos c x d x sin c x ( 1 + cos c x ) = 1 4 c tan 2 c x 2 + 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin cx(1+\cos cx)}}=-{\frac {1}{4c}}\tan ^{2}{\frac {cx}{2}}+{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
cos c x d x sin c x ( 1 cos c x ) = 1 4 c cot 2 c x 2 1 2 c ln | tan c x 2 | {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin cx(1-\cos cx)}}=-{\frac {1}{4c}}\cot ^{2}{\frac {cx}{2}}-{\frac {1}{2c}}\ln \left|\tan {\frac {cx}{2}}\right|}
sin c x d x cos c x ( 1 + sin c x ) = 1 4 c cot 2 ( c x 2 + π 4 ) + 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx(1+\sin cx)}}={\frac {1}{4c}}\cot ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sin c x d x cos c x ( 1 sin c x ) = 1 4 c tan 2 ( c x 2 + π 4 ) 1 2 c ln | tan ( c x 2 + π 4 ) | {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos cx(1-\sin cx)}}={\frac {1}{4c}}\tan ^{2}\left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2c}}\ln \left|\tan \left({\frac {cx}{2}}+{\frac {\pi }{4}}\right)\right|}
sin c x cos c x d x = 1 2 c cos 2 c x {\displaystyle \int \sin cx\cos cx\;\mathrm {d} x={\frac {-1}{2c}}\cos ^{2}cx}
sin c 1 x cos c 2 x d x = cos ( c 1 + c 2 ) x 2 ( c 1 + c 2 ) cos ( c 1 c 2 ) x 2 ( c 1 c 2 ) ( per  | c 1 | | c 2 | ) {\displaystyle \int \sin c_{1}x\cos c_{2}x\;\mathrm {d} x=-{\frac {\cos(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}-{\frac {\cos(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}\qquad ({\text{per }}|c_{1}|\neq |c_{2}|)}
sin n c x cos c x d x = 1 c ( n + 1 ) sin n + 1 c x ( per  n 1 ) {\displaystyle \int \sin ^{n}cx\cos cx\;\mathrm {d} x={\frac {1}{c(n+1)}}\sin ^{n+1}cx\qquad ({\text{per }}n\neq 1)}
sin c x cos n c x d x = 1 c ( n + 1 ) cos n + 1 c x ( per  n 1 ) {\displaystyle \int \sin cx\cos ^{n}cx\;\mathrm {d} x=-{\frac {1}{c(n+1)}}\cos ^{n+1}cx\qquad ({\text{per }}n\neq 1)}
sin n c x cos m c x d x = sin n 1 c x cos m + 1 c x c ( n + m ) + n 1 n + m sin n 2 c x cos m c x d x ( per  m , n > 0 ) {\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;\mathrm {d} x=-{\frac {\sin ^{n-1}cx\cos ^{m+1}cx}{c(n+m)}}+{\frac {n-1}{n+m}}\int \sin ^{n-2}cx\cos ^{m}cx\;\mathrm {d} x\qquad ({\text{per }}m,n>0)}
anche: sin n c x cos m c x d x = sin n + 1 c x cos m 1 c x c ( n + m ) + m 1 n + m sin n c x cos m 2 c x d x ( per  m , n > 0 ) {\displaystyle \int \sin ^{n}cx\cos ^{m}cx\;\mathrm {d} x={\frac {\sin ^{n+1}cx\cos ^{m-1}cx}{c(n+m)}}+{\frac {m-1}{n+m}}\int \sin ^{n}cx\cos ^{m-2}cx\;\mathrm {d} x\qquad ({\text{per }}m,n>0)}
d x sin c x cos c x = 1 c ln | tan c x | {\displaystyle \int {\frac {\mathrm {d} x}{\sin cx\cos cx}}={\frac {1}{c}}\ln \left|\tan cx\right|}
d x sin c x cos n c x = 1 c ( n 1 ) cos n 1 c x + d x sin c x cos n 2 c x ( per  n 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin cx\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}+\int {\frac {\mathrm {d} x}{\sin cx\cos ^{n-2}cx}}\qquad ({\text{per }}n\neq 1)}
d x sin n c x cos c x = 1 c ( n 1 ) sin n 1 c x + d x sin n 2 c x cos c x ( per  n 1 ) {\displaystyle \int {\frac {\mathrm {d} x}{\sin ^{n}cx\cos cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx\cos cx}}\qquad ({\text{per }}n\neq 1)}
sin c x d x cos n c x = 1 c ( n 1 ) cos n 1 c x ( per  n 1 ) {\displaystyle \int {\frac {\sin cx\;\mathrm {d} x}{\cos ^{n}cx}}={\frac {1}{c(n-1)\cos ^{n-1}cx}}\qquad ({\text{per }}n\neq 1)}
sin 2 c x d x cos c x = 1 c sin c x + 1 c ln | tan ( π 4 + c x 2 ) | {\displaystyle \int {\frac {\sin ^{2}cx\;\mathrm {d} x}{\cos cx}}=-{\frac {1}{c}}\sin cx+{\frac {1}{c}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {cx}{2}}\right)\right|}
sin 2 c x d x cos n c x = sin c x c ( n 1 ) cos n 1 c x 1 n 1 d x cos n 2 c x ( per  n 1 ) {\displaystyle \int {\frac {\sin ^{2}cx\;\mathrm {d} x}{\cos ^{n}cx}}={\frac {\sin cx}{c(n-1)\cos ^{n-1}cx}}-{\frac {1}{n-1}}\int {\frac {\mathrm {d} x}{\cos ^{n-2}cx}}\qquad ({\text{per }}n\neq 1)}
sin n c x d x cos c x = sin n 1 c x c ( n 1 ) + sin n 2 c x d x cos c x ( per  n 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos cx}}=-{\frac {\sin ^{n-1}cx}{c(n-1)}}+\int {\frac {\sin ^{n-2}cx\;\mathrm {d} x}{\cos cx}}\qquad ({\text{per }}n\neq 1)}
sin n c x d x cos m c x = sin n + 1 c x c ( m 1 ) cos m 1 c x n m + 2 m 1 sin n c x d x cos m 2 c x ( per  m 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}}={\frac {\sin ^{n+1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m-2}cx}}\qquad ({\text{per }}m\neq 1)}
anche: sin n c x d x cos m c x = sin n 1 c x c ( n m ) cos m 1 c x + n 1 n m sin n 2 c x d x cos m c x per  m n ) {\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}}=-{\frac {\sin ^{n-1}cx}{c(n-m)\cos ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}cx\;\mathrm {d} x}{\cos ^{m}cx}}\qquad {\text{per }}m\neq n)}
anche: sin n c x d x cos m c x = sin n 1 c x c ( m 1 ) cos m 1 c x n 1 m 1 sin n 1 c x d x cos m 2 c x ( per  m 1 ) {\displaystyle \int {\frac {\sin ^{n}cx\;\mathrm {d} x}{\cos ^{m}cx}}={\frac {\sin ^{n-1}cx}{c(m-1)\cos ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-1}cx\;\mathrm {d} x}{\cos ^{m-2}cx}}\qquad ({\text{per }}m\neq 1)}
cos c x d x sin n c x = 1 c ( n 1 ) sin n 1 c x ( per  n 1 ) {\displaystyle \int {\frac {\cos cx\;\mathrm {d} x}{\sin ^{n}cx}}=-{\frac {1}{c(n-1)\sin ^{n-1}cx}}\qquad ({\text{per }}n\neq 1)}
cos 2 c x d x sin c x = 1 c ( cos c x + ln | tan c x 2 | ) {\displaystyle \int {\frac {\cos ^{2}cx\;\mathrm {d} x}{\sin cx}}={\frac {1}{c}}\left(\cos cx+\ln \left|\tan {\frac {cx}{2}}\right|\right)}
cos 2 c x d x sin n c x = 1 n 1 ( cos c x sin n 1 c x + d x sin n 2 c x ) ( per  n 1 ) {\displaystyle \int {\frac {\cos ^{2}cx\;\mathrm {d} x}{\sin ^{n}cx}}=-{\frac {1}{n-1}}\left({\frac {\cos cx}{\sin ^{n-1}cx}}+\int {\frac {\mathrm {d} x}{\sin ^{n-2}cx}}\right)\qquad ({\text{per }}n\neq 1)}
cos n c x d x sin m c x = cos n + 1 c x c ( m 1 ) sin m 1 c x n m 2 m 1 cos n c x d x sin m 2 c x ( per  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}}=-{\frac {\cos ^{n+1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-m-2}{m-1}}\int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m-2}cx}}\qquad ({\text{per }}m\neq 1)}
anche: cos n c x d x sin m c x = cos n 1 c x c ( n m ) sin m 1 c x + n 1 n m cos n 2 c x d x sin m c x ( per  m n ) {\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}}={\frac {\cos ^{n-1}cx}{c(n-m)\sin ^{m-1}cx}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}cx\;\mathrm {d} x}{\sin ^{m}cx}}\qquad ({\text{per }}m\neq n)}
anche: cos n c x d x sin m c x = cos n 1 c x c ( m 1 ) sin m 1 c x n 1 m 1 cos n 2 c x d x sin m 2 c x ( per  m 1 ) {\displaystyle \int {\frac {\cos ^{n}cx\;\mathrm {d} x}{\sin ^{m}cx}}=-{\frac {\cos ^{n-1}cx}{c(m-1)\sin ^{m-1}cx}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}cx\;\mathrm {d} x}{\sin ^{m-2}cx}}\qquad ({\text{per }}m\neq 1)}

Integrali di funzioni trigonometriche contenenti seno e tangente

sin ( c x ) tan ( c x ) d x = ln | sec ( c x ) + tan ( c x ) | sin ( c x ) c {\displaystyle \int \sin(cx)\tan(cx)\;\mathrm {d} x={\frac {\ln |\sec(cx)+\tan(cx)|-\sin(cx)}{c}}}
tan n ( c x ) sin 2 ( c x ) d x = tan n 1 ( c x ) c ( n 1 ) ( per  n 1 ) {\displaystyle \int {\frac {\tan ^{n}(cx)}{\sin ^{2}(cx)}}\;\mathrm {d} x={\frac {\tan ^{n-1}(cx)}{c(n-1)}}\qquad ({\text{per }}n\neq 1)}

Integrali di funzioni trigonometriche contenenti coseno e tangente

tan n ( c x ) cos 2 ( c x ) d x = tan n + 1 ( c x ) c ( n + 1 ) ( per  n 1 ) {\displaystyle \int {\frac {\tan ^{n}(cx)}{\cos ^{2}(cx)}}\;\mathrm {d} x={\frac {\tan ^{n+1}(cx)}{c(n+1)}}\qquad ({\text{per }}n\neq -1)}

Integrali di funzioni trigonometriche contenenti seno e cotangente

cot n ( c x ) sin 2 ( c x ) d x = cot n + 1 ( c x ) c ( n + 1 ) ( per  n 1 ) {\displaystyle \int {\frac {\cot ^{n}(cx)}{\sin ^{2}(cx)}}\;\mathrm {d} x=-{\frac {\cot ^{n+1}(cx)}{c(n+1)}}\qquad ({\text{per }}n\neq -1)}

Integrali di funzioni trigonometriche contenenti coseno e cotangente

cot n ( c x ) cos 2 ( c x ) d x = tan 1 n ( c x ) c ( 1 n ) ( per  n 1 ) {\displaystyle \int {\frac {\cot ^{n}(cx)}{\cos ^{2}(cx)}}\;\mathrm {d} x={\frac {\tan ^{1-n}(cx)}{c(1-n)}}\qquad ({\text{per }}n\neq 1)}

Integrali di funzioni trigonometriche contenenti tangente e cotangente

tan m ( c x ) cot n ( c x ) d x = tan m + n 1 ( c x ) c ( m + n 1 ) tan m 2 ( c x ) cot n ( c x ) d x ( per  m + n 1 ) {\displaystyle \int {\frac {\tan ^{m}(cx)}{\cot ^{n}(cx)}}\;\mathrm {d} x={\frac {\tan ^{m+n-1}(cx)}{c(m+n-1)}}-\int {\frac {\tan ^{m-2}(cx)}{\cot ^{n}(cx)}}\;\mathrm {d} x\qquad ({\text{per }}m+n\neq 1)}

Bibliografia

  • Murray R. Spiegel, Manuale di matematica, Etas Libri, 1974, pp. 75-82.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica