Prüfer group

The Prüfer 2-group with presentation gn: gn+12 = gn, g12 = e, illustrated as a subgroup of the unit circle in the complex plane
Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
• Subrings
• Ideal
• Quotient ring
• Fractional ideal
Total ring of fractions
• Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
• Frobenius endomorphism

Algebraic structures

• Module
• Associative algebra
• Graded ring
• Involutive ring
• Category of rings
• Initial ring Z {\displaystyle \mathbb {Z} }
• Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
• Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Composition ring
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
Ring of integers
Algebraic independence
Transcendental number theory
Transcendence degree

p-adic number theory and decimals

Direct limit/Inverse limit
Zero ring Z / 1 Z {\displaystyle \mathbb {Z} /1\mathbb {Z} }
• Integers modulo pn Z / p n Z {\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} }
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
Base-p circle ring T {\displaystyle \mathbb {T} }
Base-p integers Z {\displaystyle \mathbb {Z} }
p-adic rationals Z [ 1 / p ] {\displaystyle \mathbb {Z} [1/p]}
Base-p real numbers R {\displaystyle \mathbb {R} }
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
p-adic solenoid T p {\displaystyle \mathbb {T} _{p}}

Algebraic geometry

Affine variety
  • v
  • t
  • e

In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p-group, Z(p), for a prime number p is the unique p-group in which every element has p different p-th roots.

The Prüfer p-groups are countable abelian groups that are important in the classification of infinite abelian groups: they (along with the group of rational numbers) form the smallest building blocks of all divisible groups.

The groups are named after Heinz Prüfer, a German mathematician of the early 20th century.

Constructions of Z(p)

The Prüfer p-group may be identified with the subgroup of the circle group, U(1), consisting of all pn-th roots of unity as n ranges over all non-negative integers:

Z ( p ) = { exp ( 2 π i m / p n ) 0 m < p n , n Z + } = { z C z ( p n ) = 1  for some  n Z + } . {\displaystyle \mathbf {Z} (p^{\infty })=\{\exp(2\pi im/p^{n})\mid 0\leq m<p^{n},\,n\in \mathbf {Z} ^{+}\}=\{z\in \mathbf {C} \mid z^{(p^{n})}=1{\text{ for some }}n\in \mathbf {Z} ^{+}\}.\;}

The group operation here is the multiplication of complex numbers.

There is a presentation

Z ( p ) = g 1 , g 2 , g 3 , g 1 p = 1 , g 2 p = g 1 , g 3 p = g 2 , . {\displaystyle \mathbf {Z} (p^{\infty })=\langle \,g_{1},g_{2},g_{3},\ldots \mid g_{1}^{p}=1,g_{2}^{p}=g_{1},g_{3}^{p}=g_{2},\dots \,\rangle .}

Here, the group operation in Z(p) is written as multiplication.

Alternatively and equivalently, the Prüfer p-group may be defined as the Sylow p-subgroup of the quotient group Q/Z, consisting of those elements whose order is a power of p:

Z ( p ) = Z [ 1 / p ] / Z {\displaystyle \mathbf {Z} (p^{\infty })=\mathbf {Z} [1/p]/\mathbf {Z} }

(where Z[1/p] denotes the group of all rational numbers whose denominator is a power of p, using addition of rational numbers as group operation).

For each natural number n, consider the quotient group Z/pnZ and the embedding Z/pnZZ/pn+1Z induced by multiplication by p. The direct limit of this system is Z(p):

Z ( p ) = lim Z / p n Z . {\displaystyle \mathbf {Z} (p^{\infty })=\varinjlim \mathbf {Z} /p^{n}\mathbf {Z} .}

If we perform the direct limit in the category of topological groups, then we need to impose a topology on each of the Z / p n Z {\displaystyle \mathbf {Z} /p^{n}\mathbf {Z} } , and take the final topology on Z ( p ) {\displaystyle \mathbf {Z} (p^{\infty })} . If we wish for Z ( p ) {\displaystyle \mathbf {Z} (p^{\infty })} to be Hausdorff, we must impose the discrete topology on each of the Z / p n Z {\displaystyle \mathbf {Z} /p^{n}\mathbf {Z} } , resulting in Z ( p ) {\displaystyle \mathbf {Z} (p^{\infty })} to have the discrete topology.

We can also write

Z ( p ) = Q p / Z p {\displaystyle \mathbf {Z} (p^{\infty })=\mathbf {Q} _{p}/\mathbf {Z} _{p}}

where Qp denotes the additive group of p-adic numbers and Zp is the subgroup of p-adic integers.

Properties

The complete list of subgroups of the Prüfer p-group Z(p) = Z[1/p]/Z is:

0 ( 1 p Z ) / Z ( 1 p 2 Z ) / Z ( 1 p 3 Z ) / Z Z ( p ) {\displaystyle 0\subsetneq \left({1 \over p}\mathbf {Z} \right)/\mathbf {Z} \subsetneq \left({1 \over p^{2}}\mathbf {Z} \right)/\mathbf {Z} \subsetneq \left({1 \over p^{3}}\mathbf {Z} \right)/\mathbf {Z} \subsetneq \cdots \subsetneq \mathbf {Z} (p^{\infty })}

Here, each ( 1 p n Z ) / Z {\displaystyle \left({1 \over p^{n}}\mathbf {Z} \right)/\mathbf {Z} } is a cyclic subgroup of Z(p) with pn elements; it contains precisely those elements of Z(p) whose order divides pn and corresponds to the set of pn-th roots of unity.

The Prüfer p-groups are the only infinite groups whose subgroups are totally ordered by inclusion. This sequence of inclusions expresses the Prüfer p-group as the direct limit of its finite subgroups. As there is no maximal subgroup of a Prüfer p-group, it is its own Frattini subgroup.

Given this list of subgroups, it is clear that the Prüfer p-groups are indecomposable (cannot be written as a direct sum of proper subgroups). More is true: the Prüfer p-groups are subdirectly irreducible. An abelian group is subdirectly irreducible if and only if it is isomorphic to a finite cyclic p-group or to a Prüfer group.

The Prüfer p-group is the unique infinite p-group that is locally cyclic (every finite set of elements generates a cyclic group). As seen above, all proper subgroups of Z(p) are finite. The Prüfer p-groups are the only infinite abelian groups with this property.[1]

The Prüfer p-groups are divisible. They play an important role in the classification of divisible groups; along with the rational numbers they are the simplest divisible groups. More precisely: an abelian group is divisible if and only if it is the direct sum of a (possibly infinite) number of copies of Q and (possibly infinite) numbers of copies of Z(p) for every prime p. The (cardinal) numbers of copies of Q and Z(p) that are used in this direct sum determine the divisible group up to isomorphism.[2]

As an abelian group (that is, as a Z-module), Z(p) is Artinian but not Noetherian.[3] It can thus be used as a counterexample against the idea that every Artinian module is Noetherian (whereas every Artinian ring is Noetherian).

The endomorphism ring of Z(p) is isomorphic to the ring of p-adic integers Zp.[4]

In the theory of locally compact topological groups the Prüfer p-group (endowed with the discrete topology) is the Pontryagin dual of the compact group of p-adic integers, and the group of p-adic integers is the Pontryagin dual of the Prüfer p-group.[5]

See also

Notes

  1. ^ See Vil'yams (2001)
  2. ^ See Kaplansky (1965)
  3. ^ See also Jacobson (2009), p. 102, ex. 2.
  4. ^ See Vil'yams (2001)
  5. ^ D. L. Armacost and W. L. Armacost,"On p-thetic groups", Pacific J. Math., 41, no. 2 (1972), 295–301

References

  • Jacobson, Nathan (2009). Basic algebra. Vol. 2 (2nd ed.). Dover. ISBN 978-0-486-47187-7.
  • Pierre Antoine Grillet (2007). Abstract algebra. Springer. ISBN 978-0-387-71567-4.
  • Kaplansky, Irving (1965). Infinite Abelian Groups. University of Michigan Press.
  • N.N. Vil'yams (2001) [1994], "Quasi-cyclic group", Encyclopedia of Mathematics, EMS Press