Frobenius inner product

Binary operation, takes two matrices and returns a scalar

In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar. It is often denoted A , B F {\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }} . The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product. The two matrices must have the same dimension - same number of rows and columns, but are not restricted to be square matrices.

Definition

Given two complex number-valued n×m matrices A and B, written explicitly as

A = ( A 11 A 12 A 1 m A 21 A 22 A 2 m A n 1 A n 2 A n m ) , B = ( B 11 B 12 B 1 m B 21 B 22 B 2 m B n 1 B n 2 B n m ) {\displaystyle \mathbf {A} ={\begin{pmatrix}A_{11}&A_{12}&\cdots &A_{1m}\\A_{21}&A_{22}&\cdots &A_{2m}\\\vdots &\vdots &\ddots &\vdots \\A_{n1}&A_{n2}&\cdots &A_{nm}\\\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}B_{11}&B_{12}&\cdots &B_{1m}\\B_{21}&B_{22}&\cdots &B_{2m}\\\vdots &\vdots &\ddots &\vdots \\B_{n1}&B_{n2}&\cdots &B_{nm}\\\end{pmatrix}}}

the Frobenius inner product is defined as,

A , B F = i , j A i j ¯ B i j = T r ( A T ¯ B ) T r ( A B ) {\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }=\sum _{i,j}{\overline {A_{ij}}}B_{ij}\,=\mathrm {Tr} \left({\overline {\mathbf {A} ^{T}}}\mathbf {B} \right)\equiv \mathrm {Tr} \left(\mathbf {A} ^{\!\dagger }\mathbf {B} \right)}

where the overline denotes the complex conjugate, and {\displaystyle \dagger } denotes Hermitian conjugate.[1] Explicitly this sum is

A , B F = A ¯ 11 B 11 + A ¯ 12 B 12 + + A ¯ 1 m B 1 m + A ¯ 21 B 21 + A ¯ 22 B 22 + + A ¯ 2 m B 2 m + A ¯ n 1 B n 1 + A ¯ n 2 B n 2 + + A ¯ n m B n m {\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }=&{\overline {A}}_{11}B_{11}+{\overline {A}}_{12}B_{12}+\cdots +{\overline {A}}_{1m}B_{1m}\\&+{\overline {A}}_{21}B_{21}+{\overline {A}}_{22}B_{22}+\cdots +{\overline {A}}_{2m}B_{2m}\\&\vdots \\&+{\overline {A}}_{n1}B_{n1}+{\overline {A}}_{n2}B_{n2}+\cdots +{\overline {A}}_{nm}B_{nm}\\\end{aligned}}}

The calculation is very similar to the dot product, which in turn is an example of an inner product.[citation needed]

Relation to other products

If A and B are each real-valued matrices, the Frobenius inner product is the sum of the entries of the Hadamard product. If the matrices are vectorised (i.e., converted into column vectors, denoted by " v e c ( ) {\displaystyle \mathrm {vec} (\cdot )} "), then

v e c ( A ) = ( A 11 A 12 A 21 A 22 A n m ) , v e c ( B ) = ( B 11 B 12 B 21 B 22 B n m ) , {\displaystyle \mathrm {vec} (\mathbf {A} )={\begin{pmatrix}A_{11}\\A_{12}\\\vdots \\A_{21}\\A_{22}\\\vdots \\A_{nm}\end{pmatrix}},\quad \mathrm {vec} (\mathbf {B} )={\begin{pmatrix}B_{11}\\B_{12}\\\vdots \\B_{21}\\B_{22}\\\vdots \\B_{nm}\end{pmatrix}}\,,} v e c ( A ) ¯ T v e c ( B ) = ( A ¯ 11 A ¯ 12 A ¯ 21 A ¯ 22 A ¯ n m ) ( B 11 B 12 B 21 B 22 B n m ) {\displaystyle \quad {\overline {\mathrm {vec} (\mathbf {A} )}}^{T}\mathrm {vec} (\mathbf {B} )={\begin{pmatrix}{\overline {A}}_{11}&{\overline {A}}_{12}&\cdots &{\overline {A}}_{21}&{\overline {A}}_{22}&\cdots &{\overline {A}}_{nm}\end{pmatrix}}{\begin{pmatrix}B_{11}\\B_{12}\\\vdots \\B_{21}\\B_{22}\\\vdots \\B_{nm}\end{pmatrix}}}

Therefore

A , B F = v e c ( A ) ¯ T v e c ( B ) . {\displaystyle \langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }={\overline {\mathrm {vec} (\mathbf {A} )}}^{T}\mathrm {vec} (\mathbf {B} )\,.} [citation needed]

Properties

Like any inner product, it is a sesquilinear form, for four complex-valued matrices A, B, C, D, and two complex numbers a and b:

a A , b B F = a ¯ b A , B F {\displaystyle \langle a\mathbf {A} ,b\mathbf {B} \rangle _{\mathrm {F} }={\overline {a}}b\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }}
A + C , B + D F = A , B F + A , D F + C , B F + C , D F {\displaystyle \langle \mathbf {A} +\mathbf {C} ,\mathbf {B} +\mathbf {D} \rangle _{\mathrm {F} }=\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }+\langle \mathbf {A} ,\mathbf {D} \rangle _{\mathrm {F} }+\langle \mathbf {C} ,\mathbf {B} \rangle _{\mathrm {F} }+\langle \mathbf {C} ,\mathbf {D} \rangle _{\mathrm {F} }}

Also, exchanging the matrices amounts to complex conjugation:

B , A F = A , B F ¯ {\displaystyle \langle \mathbf {B} ,\mathbf {A} \rangle _{\mathrm {F} }={\overline {\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }}}}

For the same matrix,

A , A F 0 {\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }\geq 0} ,[citation needed]

and,

A , A F = 0 A = 0 {\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }=0\Longleftrightarrow \mathbf {A} =\mathbf {0} } .

Frobenius norm

The inner product induces the Frobenius norm

A F = A , A F . {\displaystyle \|\mathbf {A} \|_{\mathrm {F} }={\sqrt {\langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }}}\,.} [1]

Examples

Real-valued matrices

For two real-valued matrices, if

A = ( 2 0 6 1 1 2 ) , B = ( 8 3 2 4 1 5 ) {\displaystyle \mathbf {A} ={\begin{pmatrix}2&0&6\\1&-1&2\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}8&-3&2\\4&1&-5\end{pmatrix}}}

then

A , B F = 2 8 + 0 ( 3 ) + 6 2 + 1 4 + ( 1 ) 1 + 2 ( 5 ) = 21 {\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }&=2\cdot 8+0\cdot (-3)+6\cdot 2+1\cdot 4+(-1)\cdot 1+2\cdot (-5)\\&=21\end{aligned}}}

Complex-valued matrices

For two complex-valued matrices, if

A = ( 1 + i 2 i 3 5 ) , B = ( 2 3 i 4 3 i 6 ) {\displaystyle \mathbf {A} ={\begin{pmatrix}1+i&-2i\\3&-5\end{pmatrix}}\,,\quad \mathbf {B} ={\begin{pmatrix}-2&3i\\4-3i&6\end{pmatrix}}}

then

A , B F = ( 1 i ) ( 2 ) + 2 i 3 i + 3 ( 4 3 i ) + ( 5 ) 6 = 26 7 i {\displaystyle {\begin{aligned}\langle \mathbf {A} ,\mathbf {B} \rangle _{\mathrm {F} }&=(1-i)\cdot (-2)+2i\cdot 3i+3\cdot (4-3i)+(-5)\cdot 6\\&=-26-7i\end{aligned}}}

while

B , A F = ( 2 ) ( 1 + i ) + ( 3 i ) ( 2 i ) + ( 4 + 3 i ) 3 + 6 ( 5 ) = 26 + 7 i {\displaystyle {\begin{aligned}\langle \mathbf {B} ,\mathbf {A} \rangle _{\mathrm {F} }&=(-2)\cdot (1+i)+(-3i)\cdot (-2i)+(4+3i)\cdot 3+6\cdot (-5)\\&=-26+7i\end{aligned}}}

The Frobenius inner products of A with itself, and B with itself, are respectively

A , A F = 2 + 4 + 9 + 25 = 40 {\displaystyle \langle \mathbf {A} ,\mathbf {A} \rangle _{\mathrm {F} }=2+4+9+25=40} B , B F = 4 + 9 + 25 + 36 = 74 {\displaystyle \qquad \langle \mathbf {B} ,\mathbf {B} \rangle _{\mathrm {F} }=4+9+25+36=74}

See also

  • Hadamard product (matrices)
  • Hilbert–Schmidt inner product
  • Kronecker product
  • Matrix analysis
  • Matrix multiplication
  • Matrix norm
  • Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product

References

  1. ^ a b Horn, R.A.; C.R., Johnson (1985). Topics in Matrix Analysis (2nd ed.). Cambridge: Cambridge University Press. p. 321. ISBN 978-0-521-83940-2.
  • v
  • t
  • e
Algebra
  • Outline
  • History
AreasBasic conceptsAlgebraic structures
Linear and
multilinear algebraAlgebraic constructionsTopic lists
  • Algebraic structures
Glossaries
  • Category