Fluorine azide

Fluorine azide
Names
Other names
triazadienyl fluoride
Identifiers
CAS Number
  • 14986-60-8 checkY
3D model (JSmol)
  • Interactive image
PubChem CID
  • 23235952
CompTox Dashboard (EPA)
  • DTXSID40631418 Edit this at Wikidata
InChI
  • InChI=1S/FN3/c1-3-4-2
    Key: AJXWEJAGUZJGRI-UHFFFAOYSA-N
  • [N-]=[N+]=NF
Properties
Chemical formula
FN3
Molar mass 61.019 g/mol
Appearance Yellow-green gas
Melting point −139 °C (−218 °F; 134 K)
Boiling point −30 °C (−22 °F; 243 K)
Explosive data
Shock sensitivity Extreme
Friction sensitivity Extreme
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Extremely sensitive explosive
NFPA 704 (fire diamond)
[citation needed]
NFPA 704 four-colored diamondHealth (blue): no hazard codeFlammability 0: Will not burn. E.g. waterInstability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazards (white): no code
0
4
Related compounds
Other cations
Hydrazoic acid
Chlorine azide
Bromine azide
Iodine azide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
Chemical compound

Fluorine azide or triazadienyl fluoride is a yellow green gas composed of nitrogen and fluorine with formula FN3.[1] Its properties resemble those of ClN3, BrN3, and IN3.[2] The bond between the fluorine atom and the nitrogen is very weak, leading to this substance being very unstable and prone to explosion.[3] Calculations show the F–N–N angle to be around 102° with a straight line of 3 nitrogen atoms.[4]

The gas boils at –30° and melts at –139 °C.[5]

It was first made by John F. Haller in 1942.[6]

Reactions

Fluorine azide can be made by reacting hydrazoic acid or sodium azide, with fluorine gas.[5][7]

HN3 + F2 → N3F + HF
NaN3 + F2 → N3F + NaF

Fluorine azide decomposes without explosion at normal temperatures to make dinitrogen difluoride:

2 FN3 → N2F2 + 2 N2.[1]

At higher temperatures such as 1000 °C fluorine azide breaks up into nitrogen monofluoride radical:[7]

FN3 → NF + N2

The FN itself dimerizes on cooling.

2 NF → N2F2

Solid or liquid FN3 can explode, releasing a large amount of energy. A thin film burns at the rate of 1.6 km/s.[8] Due to the explosion hazard, only very small quantities of this substance should be handled at a time.[9]

FN3 adducts can be formed with the Lewis acids boron trifluoride (BF3) and arsenic pentafluoride (AsF5) at -196 °C. These molecules bond with the Nα atom.[10]

Properties

Spectroscopy

Parameter Value[9] Unit
A 48131.448 MHz
B 5713.266 MHz
C 5095.276 MHz
μa 1.1
μb 0.7

Shape

Distances between atoms are F–N 0.1444 nm, FN=NN 0.1253 nm and FNN=N 0.1132 nm.[9]

Physical

FN3 has a density of 1.3 g/cm3.[11]

FN3 adsorbs on to solid surfaces of potassium fluoride, but not onto lithium fluoride or sodium fluoride. This property was being investigated so that FN3 could boost the energy of solid propellants.[11]

The ultraviolet photoelectric spectrum shows ionisation peaks at 11.01, 13,72, 15.6, 15.9, 16.67, 18.2, and 19.7 eV. Respectively these are assigned to the orbitals: π, nN or nF, nF, πF, nN or σ, π and σ.[3]

References

  1. ^ a b Gipstein, Edward; John F. Haller (1966). "Absorption Spectrum of Fluorine Azide". Applied Spectroscopy. 20 (6): 417–418. Bibcode:1966ApSpe..20..417G. doi:10.1366/000370266774386470. ISSN 0003-7028. S2CID 96337253.
  2. ^ Saxena, P. B. (2007-01-01). Chemistry of Interhalogen Compounds. Discovery Publishing House. p. 96. ISBN 9788183562430. Retrieved 16 June 2014.
  3. ^ a b Rademacher, Paul; Andreas J. Bittner; Gabriele Schatte; Helge Willner (1988). "Photoelectron Spectrum and Electronic Structure of Triazadienyl Fluoride, N3F". Chemische Berichte. 121 (3): 555–557. doi:10.1002/cber.19881210325. ISSN 0009-2940.
  4. ^ Peters, Nancy J. S.; Leland C. Allen; Raymond A. Firestone (1988). "Fluorine azide and fluorine nitrate: structure and bonding". Inorganic Chemistry. 27 (4): 755–758. doi:10.1021/ic00277a035. ISSN 0020-1669.
  5. ^ a b Gholivand, Khodayar; Gabriele Schatte; Helge Willner (1987). "Properties of triazadienyl fluoride, N3F". Inorganic Chemistry. 26 (13): 2137–2140. doi:10.1021/ic00260a025. ISSN 0020-1669.
  6. ^ Lowe, Derek (21 October 2008). "Things I Won't Work With: Triazadienyl Fluoride". In the Pipeline. Retrieved 15 June 2014.
  7. ^ a b Benard, D. J.; B. K. Winker; T. A. Seder; R. H. Cohn (1989). "Production of nitrogen monofluoride (a1Δ) by dissociation of fluorine azide". The Journal of Physical Chemistry. 93 (12): 4790–4796. doi:10.1021/j100349a022. ISSN 0022-3654.
  8. ^ Seder, T.A.; D.J. Benard (1991). "The decomposition of condensed phase fluorine azide". Combustion and Flame. 85 (3–4): 353–362. doi:10.1016/0010-2180(91)90139-3. ISSN 0010-2180.
  9. ^ a b c Christen, Dines.; H. G. Mack; G. Schatte; H. Willner (1988). "Structure of triazadienyl fluoride, FN3, by microwave, infrared, and ab initio methods". Journal of the American Chemical Society. 110 (3): 707–712. doi:10.1021/ja00211a007. ISSN 0002-7863.
  10. ^ Schatte, G.; H. Willner (1991). "Die Wechselwirkung von N3F mit Lewis-Säuren und HF. N3F als möglicher Vorläufer für die Synthese von N3+-Salzen = The interaction of N3F with Lewis acids and HF•N3F as possible precursor for the synthesis of N3+ salts". Zeitschrift für Naturforschung B (in German). 46 (4): 483–489. doi:10.1515/znb-1991-0410. ISSN 0932-0776. S2CID 97045269.
  11. ^ a b Brener, Nathan E.; Kestner, Neil R.; Callaway, Joseph (December 1990). Theoretical Studies of Highly Energetic CBES Materials: Final Report for the Period 2 March 1987 to 31 May 1987 (PDF). Louisiana State University, Department of Physics and Astronomy. pp. 21–27. Archived (PDF) from the original on March 3, 2016. Retrieved 25 June 2014.

External links

  • Media related to Fluorine azide at Wikimedia Commons
  • v
  • t
  • e
HF He
LiF BeF2 BF
BF3
B2F4
CF4
CxFy
NF3
N2F4
OF
OF2
O2F2
O2F
F Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF4
S2F10
SF6
ClF
ClF3
ClF5
HArF
ArF2
KF CaF2 ScF3 TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
CrF6
MnF2
MnF3
MnF4
FeF2
FeF3
CoF2
CoF3
NiF2
NiF3
CuF
CuF2
ZnF2 GaF3 GeF4 AsF3
AsF5
SeF4
SeF6
BrF
BrF3
BrF5
KrF2
KrF4
KrF6
RbF SrF2 YF3 ZrF4 NbF4
NbF5
MoF4
MoF5
MoF6
TcF6 RuF3
RuF4
RuF5
RuF6
RhF3
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
PdF6
AgF
AgF2
AgF3
Ag2F
CdF2 InF3 SnF2
SnF4
SbF3
SbF5
TeF4
TeF6
IF
IF3
IF5
IF7
XeF2
XeF4
XeF6
XeF8
CsF BaF2 * LuF3 HfF4 TaF5 WF4
WF6
ReF6
ReF7
OsF4
OsF5
OsF6
OsF
7

OsF8
IrF3
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
AuF5·F2
HgF2
Hg2F2
HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF4
PoF6
At RnF2
RnF6
Fr RaF2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* LaF3 CeF3
CeF4
PrF3
PrF4
NdF3 PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF3 HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
** AcF3 ThF4 PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF3
AmF4
AmF6
CmF3 Bk Cf Es Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • Cs2AlF5
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenidesSiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)2ZrF6
  • CsXeF7
  • Li2TiF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3
  • v
  • t
  • e
Nitrogen species
Hydrides
  • NH3
  • NH4+
  • NH2
  • N3−
  • NH2OH
  • N2H4
  • HN3
  • N3
  • NH5 (?)
Organic
Oxides
  • NO / (NO)2
  • N2O3
  • HNO2 / NO
    2
     / NO+
  • NO2 / (NO2)2
  • N2O5
  • HNO3 / NO
    3
     / NO+
    2
  • NO3
  • HNO / (HON)2 / N2O2−
    2
     / N2O
  • H2NNO2
  • HO2NO / ONOO
  • HO2NO2 / O2NOO
  • NO3−
    4
  • H4N2O4 / N2O2−
    3
Halides
  • NF
  • NF2
  • NF3
  • NF5 (?)
  • NCl3
  • NBr3
  • NI3
  • FN3
  • ClN3
  • BrN3
  • IN3
  • NH2F
  • N2F2
  • NH2Cl
  • NHF2
  • NHCl2
  • NHBr2
  • NHI2
Oxidation states
−3, −2, −1, 0, +1, +2, +3, +4, +5 (a strongly acidic oxide)
  • v
  • t
  • e
Salts and covalent derivatives of the azide ion
HN3 He
LiN3 Be(N3)2 B(N3)3 CH3N3
C(N3)4
CO(N3)2
NH4N3
N3NO
N(N3)3
H2N–N3
O FN3 Ne
NaN3 Mg(N3)2 Al(N3)3 Si(N3)4 P SO2(N3)2 ClN3 Ar
KN3 Ca(N3)2 Sc(N3)3 Ti(N3)4 VO(N3)3 Cr(N3)3
CrO2(N3)2
Mn(N3)2 Fe(N3)2
Fe(N3)3
Co(N3)2
Co(N3)3
Ni(N3)2 CuN3
Cu(N3)2
Zn(N3)2 Ga(N3)3 Ge As(N3)5 Se(N3)4 BrN3 Kr
RbN3 Sr(N3)2 Y(N3)3 Zr(N3)4 Nb Mo Tc Ru(N3)63− Rh(N3)63− Pd(N3)2 AgN3 Cd(N3)2 In Sn Sb(N3)5 Te(N3)4 IN3 Xe(N3)2
CsN3 Ba(N3)2 * Lu(N3)3 Hf Ta W Re Os Ir(N3)63− Pt(N3)62− Au(N3)4 Hg2(N3)2
Hg(N3)2
TlN3 Pb(N3)2 Bi(N3)3 Po At Rn
Fr Ra(N3)2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La(N3)3 Ce(N3)3
Ce(N3)4
Pr Nd Pm Sm(N3)3 Eu(N3)2
Eu(N3)3
Gd(N3)3 Tb Dy(N3)3 Ho(N3)3 Er Tm Yb(N3)3
** Ac(N3)3 Th(N3)4 Pa UO2(N3)2 Np Pu Am Cm Bk Cf Es Fm Md No