Eckert IV projection

Pseudocylindrical equal-area map projection
Eckert IV projection of the world.
Eckert IV projection with Tissot's indicatrices of distortion.

The Eckert IV projection is an equal-area pseudocylindrical map projection. The length of the polar lines is half that of the equator, and lines of longitude are semiellipses, or portions of ellipses. It was first described by Max Eckert in 1906 as one of a series of three pairs of pseudocylindrical projections. Within each pair, meridians are the same whereas parallels differ. Odd-numbered projections have parallels spaced equally, whereas even-numbered projections have parallels spaced to preserve area. Eckert IV is paired with Eckert III.[1]

Formulas

Forward formulae

Given a sphere of radius R, central meridian λ0 and a point with geographical latitude φ and longitude λ, plane coordinates x and y can be computed using the following formulas:

x = 2 4 π + π 2 R ( λ λ 0 ) ( 1 + cos θ ) 0.422 2382 R ( λ λ 0 ) ( 1 + cos θ ) , y = 2 π 4 + π R sin θ 1.326 5004 R sin θ , {\displaystyle {\begin{aligned}x&={\frac {2}{\sqrt {4\pi +\pi ^{2}}}}R\,(\lambda -\lambda _{0})(1+\cos \theta )\approx 0.422\,2382\,R\,(\lambda -\lambda _{0})(1+\cos \theta ),\\[8pt]y&=2{\sqrt {\frac {\pi }{4+\pi }}}R\sin \theta \approx 1.326\,5004\,R\sin \theta ,\end{aligned}}}

where

θ + sin θ cos θ + 2 sin θ = ( 2 + π 2 ) sin φ . {\displaystyle \theta +\sin \theta \cos \theta +2\sin \theta =\left(2+{\frac {\pi }{2}}\right)\sin \varphi .}

θ can be solved for numerically using Newton's method.[2]

Inverse formulae

θ = arcsin [ y 4 + π 2 π R ] arcsin [ y 1.326 5004 R ] φ = arcsin [ θ + sin θ cos θ + 2 sin θ 2 + π 2 ] λ = λ 0 + x 4 π + π 2 2 R ( 1 + cos θ ) λ 0 + x 0.422 2382 R ( 1 + cos θ ) {\displaystyle {\begin{aligned}\theta &=\arcsin \left[y{\frac {\sqrt {4+\pi }}{2{\sqrt {\pi }}R}}\right]\approx \arcsin \left[{\frac {y}{1.326\,5004\,R}}\right]\\[8pt]\varphi &=\arcsin \left[{\frac {\theta +\sin \theta \cos \theta +2\sin \theta }{2+{\frac {\pi }{2}}}}\right]\\[8pt]\lambda &=\lambda _{0}+x{\frac {\sqrt {4\pi +\pi ^{2}}}{2R(1+\cos \theta )}}\approx \lambda _{0}+{\frac {x}{0.422\,2382\,R\,(1+\cos \theta )}}\end{aligned}}}

See also

References

  1. ^ Snyder, John P.; Voxland, Philip M. (1989). An Album of Map Projections. Professional Paper 1453. Denver: USGS. p. 60. ISBN 978-0160033681. Retrieved 2024-02-16.
  2. ^ Snyder, John P. (1987). Map Projections – A Working Manual. Professional Paper 1395. Denver: USGS. pp. 253–258. ISBN 0-226-76747-7. Retrieved 2024-02-16.

External links

Wikimedia Commons has media related to Eckert IV projection.
  • Eckert IV projection at Mathworld
  • v
  • t
  • e
Map projection
Cylindrical
Mercator-conformal
Equal-area
Pseudocylindrical
Equal-area
Conical
Pseudoconical
Azimuthal
(planar)
General perspective
Pseudoazimuthal
Conformal
Equal-area
Bonne
Bottomley
Cylindrical
Tobler hyperelliptical
Equidistant in
some aspect
Gnomonic
Loxodromic
Retroazimuthal
(Mecca or Qibla)
Compromise
Hybrid
Perspective
Planar
Polyhedral
See also